

Werkstoffdaten PE-UHMW ESD schwarz

Eigenschaften	Prüfmethoden	Einheiten	Werte
Farbe	-	-	schwarz
Mittlere molare Masse (mittleres Molekulargewicht)	-	10 ⁶ g/mol	5
Dichte	ISO 1183-1	g/cm3	0.94
Wasseraufnahme:			
- Bei Sättigung im Wasser 23°C	-	%	0.03
Thermische Eigenschaften			
Schmelztemperatur (DSC, 10° C/min.)	ISO 11357-1/-3	°C	135
Wärmeleitfähigkeit bei 23°C	-	W/(K.m)	0.40
Thermischer Längenausdehnungskoeffizient: - Mittlerer Wert zwischen 23 und 100°C	-	m/(m.K)	200 x 10 ⁻⁶
Wärmeformbeständigkeitstemperatur: - Methode A: 1.8 MPa	ISO 75-1/-2	°C	42
Vicat-Erweichungstemperatur – VST/B50	ISO 306	°C	80
Obere Gebrauchstemperaturgrenze in Luft: - Kurzzeitig - Dauernd: während 20'000 h	-	°C	120 80
Untere Gebrauchstemperatur	-	°C	-150
 Brennverhalten: - "Sauerstoff-Index" - Nach UL 94 (Dicke 6 mm)	ISO 4589-1/-2 -	% -	< 20 HB
Mechanische Eigenschaften bei 23°C			
Zugversuch - Streckspannung / Bruchspannung - Streckdehnung - nominelle Bruchdehnung - Zug-Elastizitätsmodul	ISO 527-1/-2 ISO 527-1/-2 ISO 527-1/-2 ISO 527-1/-2	MPa % % MPa	19 15 > 50 750
Druckversuch: - Druckspannung bei 1 / 2 / 5% nomineller Stauchung	ISO 604	MPa	6.5 / 10.5/ 17
Charpy Schlagzähigkeit	ISO 179-1/1eU	kJ/m²	ohne Bruch
Charpy Kerbschlagzähigkeit	ISO 179-1/1eA	kJ/m²	110P
Charpy Kerbschlagzähigkeit (14° Spitzkerbe, beidseitig)	ISO 11542-2	kJ/m²	120
Kugeldrückhärte	ISO 2039-1	N/mm²	33
Shore-Härte D (15 s)	ISO 2039-2	-	60
Relativer Gewichtsverlust bei einem Abriebversuch nach dem "Sand-Wasser-Aufschlämm-Verfahren"; TIVAR 1000 = 100	ISO 15527	-	85
Elektrische Eigenschaften bei 23°C			
Durchschlagfestigkeit	IEC 60243-1	kV/mm	-
Spezifischer Durchgangswiderstand	IEC 60093	Ohm.cm	-
Spezifischer Oberflächenwiderstand	IEC 60093	Ohm	< 10 ⁷
Dielektrizitätszahl ɛ,: - bei 100 Hz - bei 1 MHz	IEC 60250 IEC 60250		-
Dielektrischer Verlustfaktor δ tan: - bei 100 Hz - bei 1 MHz	IEC 60250 IEC 60250		-
Vergleichszahl der Kriechwegbildung (CTI)	IEC 60112	-	-

körperherstellung variieren. Diese Angaben lassen sich nicht ohne weiteres auf Fertigteile übertragen. Die Eignung der Materialien für ein bestimmtes Produkt ist vom Verarbeiter bzw. Anwender zu prüfen.

Die hier abgegebenen Daten sind Richtwerte und können je nach Verarbeitungsverfahren und Probe-

PE-UHMW ESD schwarz

bietet antistatische Eigenschaften für PE-UHMW Komponenten, die bei hohen Geschwindigkeiten und Förderleistungen erforderlich sind. Das PE-UHMW ESD schwarz hat permanente ESD Eigenschaften. Die lebensmittelrechtliche Zusammensetzung entspricht den Vorschriften der FDA und der Verordnung (EG) 1935/2004 und (EU) 10/2011.

Note: $1 \text{ g/cm}^3 = 1000 \text{ kg/m}^3$; $1 \text{ Mpa} = 1 \text{ N/mm}^2$; 1 kV/mm = 1 MV/m.