

Werkstoffdaten PA 6G Nylatron GSM

Eigenschaften	Prüfmethoden	Einheiten	Werte
Farbe	-	-	anthrazit
Dichte	ISO 1183-1	g/cm3	1.16
Wasseraufnahme:			
 Nach 24/96 h Lagerung im Wasser von 23°C 	ISO 62	mg	52/98
	ISO 62	%	0.76 / 1.43
- Bei Sättigung im Normalklima 23°C / 50% RF	-	%	2.4
- Bei Sättigung im Wasser 23°C	-	%	6.7
Thermische Eigenschaften	100 11057 1/0	0.0	
Schmelztemperatur (DSC, 10° C/min.)	ISO 11357-1/-3	°C	215
Glasübergangstemperatur (DSC, 20°C/min.)	ISO 11357-1/-2	°C	-
Wärmeleitfähigkeit bei 23°C	-	W/(K.m)	0.30
Thermischer Längenausdehnungskoeffizient:			
- mittlerer Wert zwischen 23 und 60°C	-	m/(m.K)	80 x 10 ⁻⁶
- mittlerer Wert zwischen 23 und 100°C	-	m/(m.K)	90 x 10 ⁻⁶
Wärmeformbeständigkeitstemperatur:	+ ISO 75 1/2	°C	80
- Methode A: 1.8 MPa Obere Gebrauchstemperaturgrenze in Luft:	+ ISO 75-1/-2		60
- kurzzeitig	_	°C	170
- dauernd: während 5'000 / 20'000 h		°C	105/90
Untere Gebrauchstemperatur	-	°C	-30
Brennverhalten:			
- "Sauerstoff-Index"	ISO 4589-1/-2	%	25
- Nach UL 94 (Dicke 3 / 6 mm)	-	-	HB / HB
Mechanische Eigenschaften bei 23°C			
Zugversuch			
- Streckspannung / Bruchspannung	+ ISO 527-1/-2	MPa	80 / -
- Zugfestigkeit	++ ISO 527-1/-2 + ISO 527-1/-2	MPa MPa	50 / - 82
- Streckdehnung	+ ISO 527-1/-2	WF 4 %	5
- Bruchdehnung	+ ISO 527-1/-2	%	250
ŭ	++ ISO 527-1/-2	%	> 50
- Zug-Elastizitätsmodul	+ ISO 527-1/-2	MPa	3400
	++ ISO 527-1/-2	MPa	1650
Druckversuch:	. 100.004	MD.	22 / 62 / 61
- Druckspannung bei 1 / 2 / 5% nomineller Stauchung	+ ISO 604	MPa	33 / 62 / 91
Charpy Schlagzähigkeit	+ ISO 179-1/1eU	kJ/m²	ohne Bruch
Charpy Kerbschlagzähigkeit	+ ISO 179-1/1eA	kJ/m²	3
Kugeldrückhärte	+ ISO 2039-1	N/mm²	160
Rockwellhärte	+ ISO 2039-2	-	M84
Elektrische Eigenschaften bei 23°C			
Durchschlagfestigkeit	+ IEC 60243-1	kV/mm	24
	++ IEC 60243-1	kV/mm	16
Spezifischer Durchgangswiderstand	+ IEC 60093	Ohm.cm	> 1014
	++ IEC 60093	Ohm.cm	> 1012
Spezifischer Oberflächenwiderstand	+ IEC 60093	Ohm	> 1013
	++ IEC 60093	Ohm	> 1012
Dielektrizitätszahl Er: - bei 100 Hz	+ IEC 60250	-	3.6
	++ IEC 60250	-	6.6
- bei 1 MHz	+ IEC 60250 ++ IEC 60250		3.2 3.7
Dialaktriaahar Varkustaktar Star L.: 100 II-		-	
Dielektrischer Verlustfaktor δ tan: - bei 100 Hz	+ IEC 60250 ++ IEC 60250	-	0.012 0.14
- bei 1 MHz	++ IEC 60250 + IEC 60250		0.14
DCI I MILIZ	++ IEC 60250	_	0.016
Vergleichszahl der Kriechwegbildung (CTI)	+ IEC 60112	_	600
0	++ IEC 60112	I	600

- + : Werte für trockenes Material
- ++ : Werte für bis zur Sättigung im Normalklima 23°C / 50% RF gelagertes Material (grossenteils der Literatur entnommen)

Die hier abgegebenen Daten sind Richtwerte und können je nach Verarbeitungsverfahren und Probekörperherstellung variieren. Diese Angaben lassen sich nicht ohne weiteres auf Fertigteile übertragen. Die Eignung der Materialien für ein bestimmtes Produkt ist vom Verarbeiter bzw. Anwender zu prüfen.

PA 6G Nylatron GSM

PA 6G mit MoS2

PA 6G Nylatron GSM ist ein PA 6 Gusspolyamid, welches wie PA 66 Nylatron GS mit Molybdändisulfid (MoS2) modifiziert ist. Das MoS2 dient auch bei diesem Werkstoff als Keimbilder zur Erreichung einer gleichmässig feinkristallinen Struktur.

Note: $1 \text{ g/cm}^3 = 1000 \text{ kg/m}^3$; $1 \text{ Mpa} = 1 \text{ N/mm}^2$; 1 kV/mm = aMV/m.

OSP: ohne Streckpunkt